

MEMÓRIA CÁLCULO DA QUANTIFICAÇÃO

INFRAESTRUTURA URBANA – PAVIMENTAÇÃO ASFÁLTICA E DRENAGEM DE ÁGUAS PLUVIAIS

A Superintendência do Desenvolvimento do Centro-Oeste - SUDECO

1 - SERVIÇOS PRELIMINARES

1.01 – Aquisição de placa de obra pronta, em chapa de aço, e assentamento.

Altura: 2,00mx Largura: 4,00x Unidades: $2 = 16,00m^2$

1.02 – Execução de almoxarifado em canteiro de obra em chapa de madeira compensada, incluso prateleiras.

Comprimento: 3,00m x Largura: 3,00 x Unidades: $1 = 09,00m^2$

2 - TERRAPLANAGEM

2.01 - Preparo do subleito, carga e descarga mecânica, exclusive transporte.

Segue planilhas de cubação.

CUBAÇÃO - MOVIMENTAÇÃO DE SOLO - EMPOLADO										
	Area de Pavimentação Cota zero (m) Epolament o									
CORTE	13.546,06	0,30	25%	5.079,78	m³					
ATERRO	13.546,06	0,30	25%	5.079,78	m³					
	10.1059,56	m³								

2.02 - Preparo do subleito, escavação mecânica.

Segue planilhas de cubação.

CUBAÇÃO - MOVIMENTAÇÃO DE SOLO - EMPOLADO									
	Volume	unid							
CORTE	13.546,06	0,30	4.063,82	m³					
ATERRO	13.546,06	0,30	4.063,82	m³					
	TOTAL		8.127,65	m³					

2.03 - Transporte local em caminhão basculante em via pavimentada (pista x depósito de expurgo), DMT ≥ 8,50km.

Fórmula do Transporte: Volume proveniente do preparo do subleito x DMT

Legenda 01:

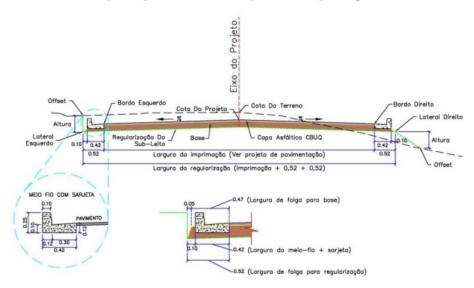
DMT = 1,50 km - Jazida de Arenito

 $V = 5.079,78m^3 \times 7,00km = 35.558,47 \text{ m}^3.km$

Legenda 02:

DMT = 7,00 km - depósito de expurgo

 $V = 5.079,78m^3 \times 1,50km = 7.619,67 \text{ m}^3.km$


Volume Total = $35.558,47 + 7.619,67 = 43.178,14 \text{ m}^3.\text{km}$

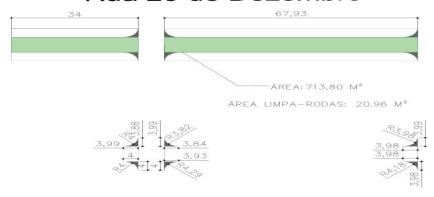
3 - PAVIMENTAÇÃO ASFÁLTICA

3.01 - Regularização e compactação do subleito, 95% do PN até 30 cm de espessura. **Fórmula:** A = (área de imprimação) + (ext. do meio fio x 0,52) x (Espessura do Aterro)

Seção Tipo de Pavimentação e Terraplenagem

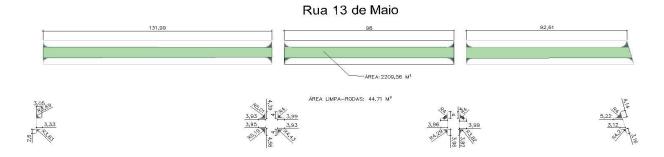
RUA PAULA ALVES DE PAULO

Rua Paulo Alves de Paula



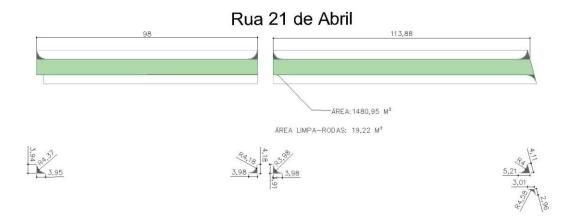
A = (989,59 + 974,92 + 14,87)

 $A = 1.984,36m^2 - Valor arredondado$


RUA 25 DE DEZEMBRO

Rua 25 de Dezembro

 $A = 840,00m^2$ - Valor arredondado

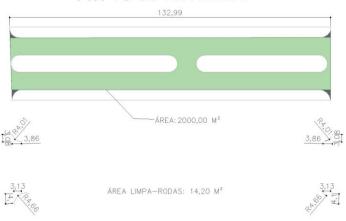

RUA 13 DE MAIO

 $A = 2.298,48m^2$ - Valor arredondado

RUA 21 DE ABRIL

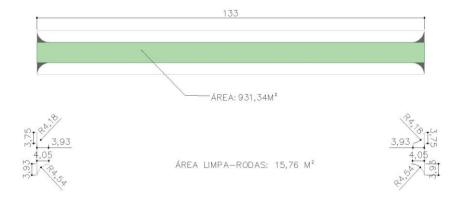
$A = 1.514,95m^2 - Valor arredondado$

RUA 12 DE OUTUBRO



A = 3.182,49m² - Valor arredondado

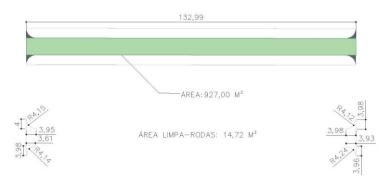
RUA 15 DE NOVEMBRO


Av. 15 de Novembro

A = 1.924,28m² - Valor arredondado

RUA 10 DE JUNHO

Rua 10 de Junho



A = 900,77m² - Valor arredondado

RUA 11 DE NOVEMBO

Rua 11 de Novembro

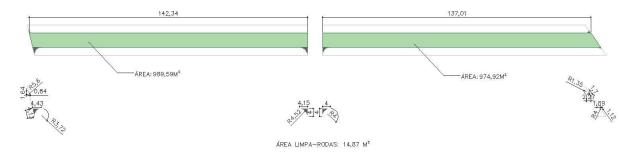
A = 900,77m² - Valor arredondado

TOTAL: $(1.984,36 + 840,00 + 2.298,48 + 1514,95 + 3.182,49 + 1.924,28 + 900,77 + 900,77) \times (0,30) \times (1,25) = 5.079,79m^2$ (valor arredondado)

3.02 – Execução e compactação mecânica de base ou sub base com brita graduada, incluindo fornecimento. Exclusive transporte do material.

Fórmula: Abase = (área de imprimação) + (ext. do meio fio x 0,47)

Fórmula: Vcascalho = (área da base x espessura da base)

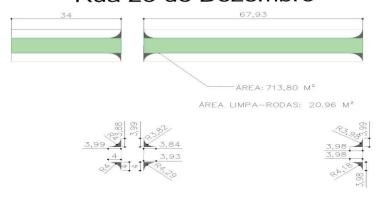

Legenda:

Espessura da base = 14cm = 0,14m

RUA PAULA ALVES DE PAULO

Rua Paulo Alves de Paula

Abase = (989,59 + 974,92 + 14,87)

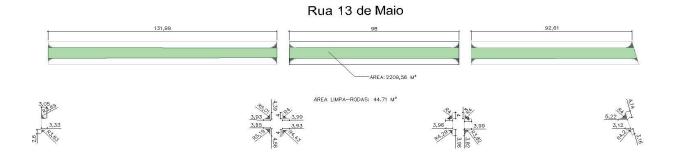

Abase = 1.984,36m² - Valor arredondado

Vcascalho = $(1.984,36 \times 0,14)$

 $V_{\text{cascalho}} = 277,81 \text{ m}^3$

RUA 25 DE DEZEMBRO

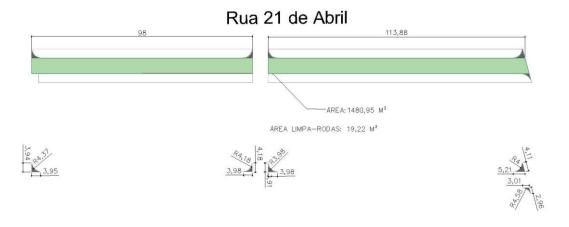
Rua 25 de Dezembro


Abase = 840,00m² - Valor arredondado

(- -,--

 $V_{\text{cascalho}} = 117,60 \text{ m}^3$

RUA 13 DE MAIO

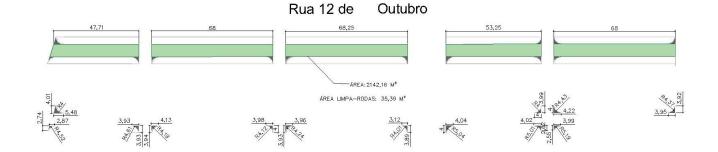


Abase = 2.298,48m² - Valor arredondado

Vcascalho = (2.298,48x 0,14)

 $V_{\text{cascalho}} = 321,79 \text{ m}^3$

RUA 21 DE ABRIL



Abase = 1.514,95m² - Valor arredondado

Vcascalho = (1.514,95x 0,14)

 $V_{\text{cascalho}} = 212,09 \text{ m}^3$

Abase = 3.182,49m² - Valor arredondado

 $Vcascalho = (3.182,49 \times 0,14)$

 $V_{cascalho} = 445,54 \text{ m}^3$

RUA 15 DE NOVEMBRO

Av. 15 de Novembro

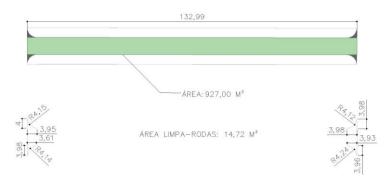
Abase = 1.924,28m² - Valor arredondado

Vcascalho = (1.924,28x 0,14)

 $V_{\text{cascalho}} = 269,40 \text{ m}^3$

RUA 10 DE JUNHO

Rua 10 de Junho


Abase = 900,77m² - Valor arredondado

Vcascalho = (900,77x 0,14)

 $V_{\text{cascalho}} = 126,11 \text{ m}^3$

RUA 11 DE NOVEMBO

Rua 11 de Novembro

Abase = 900,77m² - Valor arredondado

Vcascalho = (900,77x 0,14)

 $V_{\text{cascalho}} = 126,11 \text{ m}^3$

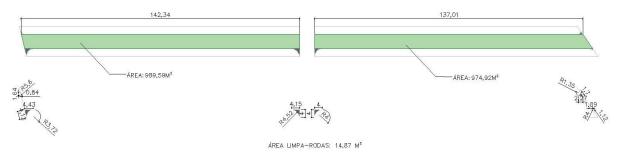
TOTAL: 277,81 + 177,60 + 321,79 + 212,09 + 445,54 + 269,40 + 126,11 + 126,11 = 1.896,45 m³ (valor arredondado)

3.03 - Transporte local em caminhão basculante em via pavimentada (cascalheira x pista), DMT ≥ 4km.

Fórmula do Transporte: Volume do cascalho empolado x DMT x Peso

Legenda:

DMT = 30km - depósito de cascalho

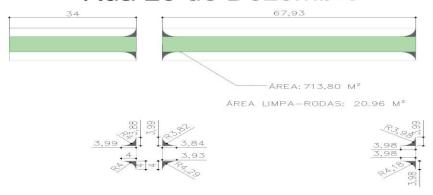

 $V = 1.896,45m^3 \times 30km \times 1,50T = 85.340,32 \text{ T.km}$

3.04 - Imprimação da base, execução e fornecimento de asfalto diluído CM - 30.

Fórmula: Aimprimação = (extensão x largura) + (área dos raios)

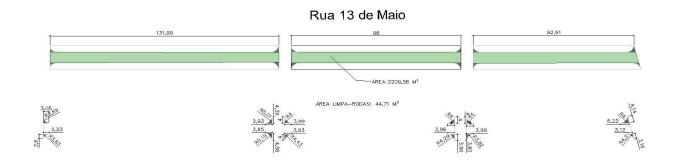
RUA PAULA ALVES DE PAULO

Rua Paulo Alves de Paula



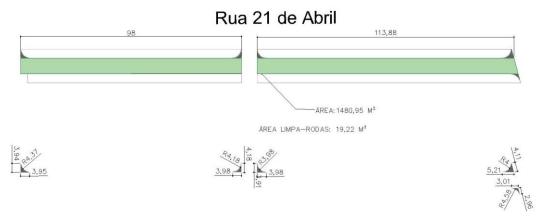
Aimprimação = (989,59 + 974,92 + 14,87)

Aimprimação = 1.984,36m² - Valor arredondado

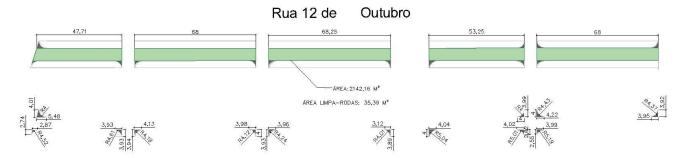

RUA 25 DE DEZEMBRO

Rua 25 de Dezembro

Aimprimação = 840,00m² - Valor arredondado


RUA 13 DE MAIO

Aimprimação = 2.298,48m² - Valor arredondado



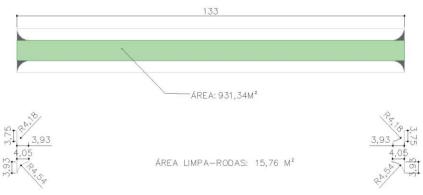
RUA 21 DE ABRIL

Aimprimação = 1.514,95m² - Valor arredondado

RUA 12 DE OUTUBRO

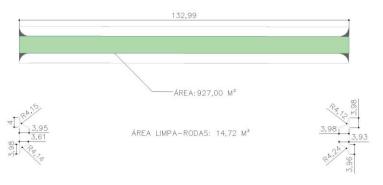
Aimprimação = 3.182,49m² - Valor arredondado

RUA 15 DE NOVEMBRO



Aimprimação = 1.924,28m² - Valor arredondado

RUA 10 DE JUNHO


Rua 10 de Junho

Aimprimação = 900,77m² - Valor arredondado

RUA 11 DE NOVEMBO

Rua 11 de Novembro

Aimprimação = 900,77m² - Valor arredondado

TOTAL: = 1.984,36 + 840,00 +2.298,48 + 1514,95 + 3.182,49 + 1.924,28 + 900,77 + 900,77 = 13.546,09m² (valor arredondado)

3.05 - Pintura de Ligação com Emulsão RR-1C.

Fórmula: Apintura = (Aimprimação)

Apintura = 13.546,09m² = 13.546,09 m²

3.06 - Concreto Betuminoso Usinado à Quente - CBUQ - FAIXA "C" - para pavimentação asfáltica, padrão DNIT, com CAP 50-70, posto usina.

Fórmula: V = (imprimação x espessura da capa)

Legenda:

V = Volume do CBUQ Espessura da capa = 3 cm

 $V = 13.546,09 \text{m}^2 \times 0.03 \text{ m} = 406,38 \text{ m}^3$

3.07 - Transporte de material betuminosos à frio - rodovia com revestimento asfáltico.

Fórmula: V = (volume de CBUQ x Peso específico x DMT)

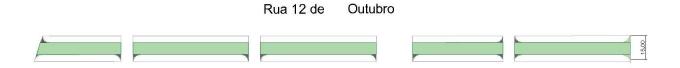
Legenda:

Peso específico do CBUQ = 2,4 t/m³ DMT = 06km – usina de CBUQ

 $V = 406,38m^3 \times 06km \times 2,5548T/m^3 = 6.203,36 T.km$

3.08 - Tento (acabamento de limpa-rodas), concreto fck = 15 MPa, seção 330cm², moldado no local, inclusive escavação.

Fórmula: soma do perímetro


RUA 25 DE DEZEMBRO

Rua 25 de Dezembro

Perímetro: 15,00 = 15,00m

RUA 12 DE OUTUBRO

Perímetro: 15,00 = 15,00m

TOTAL: 15,00 + 15,00 = 30,00m

4 - SERVIÇOS COMPLEMENTARES

4.01 - Sinalização horizontal com tinta retrorrefletiva a base de resina acrílica com microesferas de vidro

SINALIZAÇÃO	RUA PAULO ALVES DE PAULA	RUA 25 DE DEZEMB RO	RUA 13 DE MAIO	RUA 21 DE ABRIL	RUA 12 DE OUTUBRO	AV. 15 DE NOVEMBRO	RUA 10 DE JUNHO	RUA 11 DE NOVEMBRO
FAIXA DE PEDESTRE (0,90 m² / unid)	43,2 m²	32,40 m²	64,80 m²	43,2 m²	108,00 m²	46,80 m²	21,60 m²	21,60 m²
FAIXA DE RETENÇÃO (01,47 m² / unid)	5,90 m²	4,41 m²	7,47 m²	4,98 m²	10,95 m²	2,20 m²	2,49 m²	2,49 m²
LINHA DE DIVISÃO DE FLUXO - DUPLA (3,00 m² / unid)	12,00 m²	9,00 m²	18,00 m²	12,00 m ²	30,00 m²	12,00 m²	6,00 m²	6,00 m²
LINHA DE DIVISÃO DE FLUXO - SECCIONADA (0,20 m² / unid)	7,00 m²	2,60 m²	7,20 m²	4,80 m²	7,60 m²	6,40 m²	3,20 m²	3,20 m²
ESCRITA PARE (1,15 m² / unid)	4,60 m²	3,45 m²	6,90 m²	4,60 m²	11,50 m²	2,30 m²	2,30 m²	2,30 m²
TOTAL	72,70 m ²	51,86 m ²	104,37m ²	69,58m²	168,05 m²	69,70 m²	35,59 m²	35,59 m²

TOTAL: $72,70 + 51,86 + 104,37 + 69,58 + 168,05 + 69,70 + 35,59 + 35,59 = 607,42 \text{ m}^2$

4.02 - Placa esmaltada para identificação nome de rua, dimensões 45x25cm.

SINALIZAÇÃO	RUA PAULO ALVES DE PAULA	RUA 25 DE DEZEMB RO	RUA 13 DE MAIO	RUA 21 DE ABRIL	RUA 12 DE OUTUBRO	AV. 15 DE NOVEMBRO	RUA 10 DE JUNHO	RUA 11 DE NOVEMBRO
Placa Nome de Rua (0,112 m²)	2 unid	6 unid	6 unid	2 unid	2 unid	4 unid	4 unid	4 unid

TOTAL: 2 + 6 + 6 + 2 + 2 + 4 + 4 + 4 = 30,00 und

4.03 - Fornecimento e instalação de placa de sinalização vertical (até 0,59 m²)

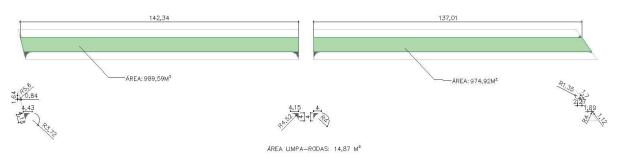
SINALIZAÇÃO	RUA PAULO ALVES DE PAULA	RUA 25 DE DEZEMB RO	RUA 13 DE MAIO	RUA 21 DE ABRIL	RUA 12 DE OUTUBRO	AV. 15 DE NOVEMBRO	RUA 10 DE JUNHO	RUA 11 DE NOVEMBRO
Placa Pare (0,59 m²)	1,18 m²	1,77 m²	2,36 m²	1,18 m²	0,59 m²	2,36 m²	1,18 m²	1,18 m²

TOTAL: $1,18 + 1,77 + 2,36 + 1,18 + 0,59 + 2,36 + 1,18 + 1,18 = 11,80 \text{ m}^2$

4.04 – Suporte em tubo de aço galvanizado para placas de sinalização.

Fórmula: Total Suporte= (Total de placas de nome de rua / 2) + (Total área de placa pare / 0,59)

Total Suporte = (30/2) + (11,80 / 0,59) = 15 + 20 = 35,00 und



4.05 - Meio-fio com sarjeta, concreto fck = 15MPa, seção 615 cm², moldado no local, inclusive escavação e pintura a cal em uma demão.

Fórmula: soma do perímetro

RUA PAULA ALVES DE PAULO

Rua Paulo Alves de Paula

Perímetro: 267,50 + 21,98 + 261,94 + 21,98 = 573,40 m

TOTAL: 573,40 + 240,00 + 713,01 + 443,68 + 841,86 + 544,75 + 262,56 + 262,56 = 3.881,82 m

4.06 – Execução de passeio ou piso de concreto moldado in loco.

Fórmula: soma do área.

RUA PAULA ALVES DE PAULO

Área: 401,25 + 7,07 + 392,91 + 7,07 = 808,30 m²

TOTAL: $808,30 + 360,00 + 931,75 + 604,29 + 1.140,34 + 764,14 + 378,53 + 378,93 = 5.365,85 \text{ m}^2$

4.07 - Piso podo tátil para rampas de acessibilidade.

Fórmula: soma dos comprimentos de piso.

Piso Podo tátil	RUA PAULO ALVES DE PAULA	RUA 25 DE DEZEMB RO	RUA 13 DE MAIO	RUA 21 DE ABRIL	RUA 12 DE OUTUBRO	AV. 15 DE NOVEMBRO	RUA 10 DE JUNHO	RUA 11 DE NOVEMBRO
Piso = 4,50 m por rampas	13,50 m	18,00 m	30,00 m	9,00 m	33,00 m	15,60 m	12,00 m	12,00 m

TOTAL: 13,50 + 18,00 + 30,00 + 9,00 + 33,00 + 15,60 + 12,00 + 12,00 = 218,70 m

5 - RAMPAS

5.01 – Concreto Usinado convencional.

Fórmula: Vrampa = (soma dos volumes de conceto).

Piso Podo tátil	RUA PAULO ALVES DE PAULA	RUA 25 DE DEZEMB RO	RUA 13 DE MAIO	RUA 21 DE ABRIL	RUA 12 DE OUTUBRO	AV. 15 DE NOVEMBRO	RUA 10 DE JUNHO	RUA 11 DE NOVEMBRO
Volume de concreto = 0,3882 por rampas	1,08 m³	1,78 m³	1,97 m³	1,78 m³	6,72 m³	1,90 m³	1,19 m³	1,19 m³

TOTAL: $1,08 + 1,78 + 1,97 + 1,78 + 6,72 + 1,90 + 1,19 + 1,19 = 20,56 \text{ m}^3$

5.02 – Lançamento e adensamento do concreto Usinado convencional.

Fórmula: Vlança = (soma dos volumes de conceto).

Total volume de Lançamento = 20,56 = 20,56 m³

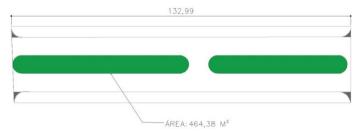
5.03 – Montagem e desmontagem de formas.

Fórmula: = (soma das áreas de formas).

Piso Podo tátil	RUA PAULO ALVES DE PAULA	RUA 25 DE DEZEMB RO	RUA 13 DE MAIO	RUA 21 DE ABRIL	RUA 12 DE OUTUBRO	AV. 15 DE NOVEMBRO	RUA 10 DE JUNHO	RUA 11 DE NOVEMBRO
Área de forma = 1,14 m² por rampa	4,20 m²	4,59 m²	9,94 m²	6,88 m²	17,59 m²	4,74 m²	3,06 m²	3,06 m²

TOTAL: 4,20 + 4,59 + 9,94 + 6,88 + 17,59 + 4,74 + 3,06 + 3,06 = 54,06 m²

6 - PAISAGISMO


6.01 – Plantio de grama.

Fórmula: = (áreas dos canteiros).

AVENIDA 15 DE NOVEMBRO

Av. 15 de Novembro

TOTAL: $464,38 = 464,38 \text{ m}^2$

6.02 – Fornecimento de grama.

Fórmula: = (áreas dos canteiros).

Total Área de plantio = 464,38 = 464,38 m³

6.03 – Plantio de arvores ornamentais.

Fórmula: = (áreas dos canteiros / 50 m²).

Total Árvores = 464,38 / 50 = 10 unid (adotado numero inteiro)

7 - MICRODRENAGEM

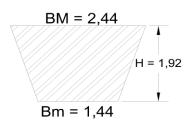
7.1 - Escavação mecanizada de vala com profundidade maior que 1,5 metros até 3,0 metros, largura até 1,5 metros em solo de 1° categoria, em locais com alto nível de interferência.

Fórmula: $V = (C \times (((Bm + BM)/2) \times H)) \times 85\%$

Legenda:

V = Volume

C = Comprimento da rede

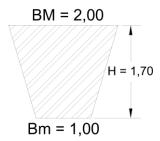

Bm = Base menor

BM = Base major

H = Altura da escavação

85% = Valor fixo de compactação

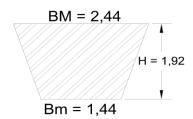
RUA 15 DE NOVEMBRO - TUBO DE 600M


 $V = (147,87 \times (((1,44 + 2,44)/2) \times 1,92)) \times 85\%$

 $V = 468,168 \text{ m}^3$

TOTAL: 468,17 m³ (valor arredondado)

RUA 15 DE NOVEMBRO - TUBO DE 400M



$$V = (35,96 \times (((1,00 + 2,00)/2) \times 1,70)) \times 85\%$$

 $V = 77,943 \text{ m}^3$

TOTAL: 77,94 m³ (valor arredondado)

RUA 12 DE OUTUBRO - TUBO DE 600M

$$V = (71.87 \times (((1.44 + 2.44)/2) \times 1.92)) \times 85\%$$

 $V = 227,546 \text{ m}^3$

TOTAL: 227,55 m³ (valor arredondado)

RUA 12 DE OUTUBRO - TUBO DE 400M

$$V = (113,33 \times (((1,00 + 2,00)/2) \times 1,70)) \times 85\%$$

 $V = 245,642 \text{ m}^3$

TOTAL: 245,64 m³ (valor arredondado)

TOTAL SOMATÓRIO = 1.019,30m³

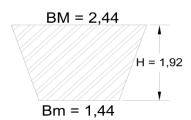
7.2 - Escavação manual de vala com profundidade menor ou igual a 1,3 metros.

Fórmula: $V = (C \times (((Bm + BM)/2) \times H)) \times 15\%$

Legenda:

V = Volume

C = Comprimento da rede

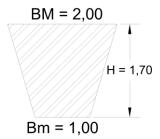

Bm = Base menor

BM = Base maior

H = Altura da escavação

15% = Valor fixo de compactação

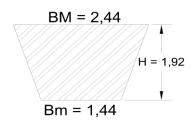
RUA 15 DE NOVEMBRO - TUBO DE 600M


 $V = (147.87 \times (((1.44 + 2.44)/2) \times 1.92)) \times 15\%$

 $V = 82,617 \text{ m}^3$

TOTAL: 82,62 m³ (valor arredondado)

RUA 15 DE NOVEMBRO - TUBO DE 400M



$$V = (35,96 \times (((1,00 + 2,00)/2) \times 1,70)) \times 15\%$$

 $V = 13,754 \text{ m}^3$

TOTAL: 13,75 m³ (valor arredondado)

RUA 12 DE OUTUBRO - TUBO DE 600M

$$V = (71.87 \times (((1.44 + 2.44)/2) \times 1.92)) \times 15\%$$

 $V = 40,155 \text{ m}^3$

TOTAL: 40,16 m³ (valor arredondado)

RUA 12 DE OUTUBRO - TUBO DE 400M

$$V = (113,33 \times (((1,00 + 2,00)/2) \times 1,70)) \times 15\%$$

 $V = 43,348 \text{ m}^3$

TOTAL: 43,35 m³ (valor arredondado)

TOTAL SOMATÓRIO = 179,87m³

7.3 - Reaterro manual apiloado com soquete.

Fórmula: $RC = (C \times D)$

Legenda:

RC = Reaterro manual com soquete

C = Comprimento da rede

D = Diâmetro do tubo

RUA 15 DE NOVEMBRO - TUBO DE 600M

 $RC = (C \times D)$

 $RC = (147,87 \times 0,72)$

RC = 106,466

TOTAL: 106,47 m² (valor arredondado)

RUA 15 DE NOVEMBRO - TUBO DE 400M

 $RC = (C \times D)$

 $RC = (35,96 \times 0,50)$

RC = 17,98

TOTAL: 17,98 m² (valor arredondado)

RUA 12 DE OUTUBRO - TUBO DE 600M

 $RC = (C \times D)$

 $RC = (71,87 \times 0,72)$

RC = 51,746

TOTAL: 51,75 m² (valor arredondado)

RUA 12 DE OUTUBRO - TUBO DE 400M

 $RC = (C \times D)$

 $RC = (113,33 \times 0,50)$

RC = 56,665

TOTAL: 56,57m² (valor arredondado)

TOTAL SOMATÓRIO = 232,86m³

7.4 - Compactação mecânica a 95% do proctor normal - pavimentação urbana.

Fórmula: R = (Emec + Eman - V.Tubos) x 70%

Legenda:

R = Reaterro

Emec = Escavação mecanizada

Eman = Escavação manual

V.Tubos = Volume dos tubos

RUA 15 DE NOVEMBRO - TUBO DE 600M

Volume dos tubos = π x (diâmetro do tubo/2) 2 x comprimento da rede.

Volume dos Tubos = $3,14 \times (0,72/2)^2 \times 147,87$

VOLUME DOS TUDOS: 60,17 m³ (valor arredondado)

 $R = ((468,17 + 82,62 - 60,17) \times 70\%)/2$

 $R = 417,02m^3$

R TOTAL = $417,02m^3$ (valor arredondado)

RUA 15 DE NOVEMBRO - TUBO DE 400M

Volume dos tubos = π x (diâmetro do tubo/2) 2 x comprimento da rede.

Volume dos Tubos = $3,14 \times (0,50/2)^2 \times 35,96$

VOLUME DOS TUDOS: 7,06 m³ (valor arredondado)

 $R = ((77,94 + 13,75 - 7,06) \times 70\%)/2$

 $R = 71,935m^3$

R TOTAL = $71,94m^3$ (valor arredondado)

RUA 12 DE OUTUBRO - TUBO DE 600M

Volume dos tubos = π x (diâmetro do tubo/2) 2 x comprimento da rede.

Volume dos Tubos = $3,14 \times (0,72/2)^2 \times 71,87$

VOLUME DOS TUDOS: 29,25 m³ (valor arredondado)

 $R = ((227,55 + 40,16 - 29,25) \times 70\%)/2$

 $R = 202,691 \text{m}^3$

R TOTAL = 202,69m³(valor arredondado)

RUA 12 DE OUTUBRO - TUBO DE 400M

Volume dos tubos = π x (diametro do tubo/2) 2 x comprimento da rede.

Volume dos Tubos = $3,14 \times (0,50/2)^2 \times 113,33$

VOLUME DOS TUDOS: 22,24 m³ (valor arredondado)

 $R = ((245,64 + 43,35 - 22,24) \times 70\%)/2$

 $R = 226,737m^3$

R TOTAL = $226,74m^3$ (valor arredondado)

TOTAL SOMATÓRIO = 918,38m³

7.5 - Reaterro manual de valas com compactação mecanizada

Fórmula: R = (Emec + Eman - V.Tubos) x 30%

Legenda:

R = Reaterro

Emec = Escavação mecanizada

Eman = Escavação manual

V.Tubos = Volume dos tubos

RUA 15 DE NOVEMBRO - TUBO DE 600M

Volume dos tubos = π x (diâmetro do tubo/2) 2 x comprimento da rede.

Volume dos Tubos = $3,14 \times (0,72/2)^2 \times 147,87$

VOLUME DOS TUDOS: 60,17 m³ (valor arredondado)

 $R = ((468,17 + 82,62 - 60,17) \times 30\%)/2$

 $R = 73,593m^3$

R TOTAL = 73,59m³(valor arredondado)

RUA 15 DE NOVEMBRO - TUBO DE 400M

Volume dos tubos = π x (diâmetro do tubo/2) 2 x comprimento da rede.

Volume dos Tubos = $3,14 \times (0,50/2)^2 \times 35,96$

VOLUME DOS TUDOS: 7,06 m³ (valor arredondado)

 $R = ((77,94 + 13,75 - 7,06) \times 30\%)/2$

 $R = 12,69m^3$

R TOTAL = 12,70m³(valor arredondado)

RUA 12 DE OUTUBRO - TUBO DE 600M

Volume dos tubos = π x (diâmetro do tubo/2) 2 x comprimento da rede.

Volume dos Tubos = $3,14 \times (0,72/2)^2 \times 71,87$

VOLUME DOS TUDOS: 29,25 m³ (valor arredondado)

 $R = ((227,55 + 40,16 - 29,25) \times 30\%)/2$

 $R = 35,765m^3$

R TOTAL = 35,77m³(valor arredondado)

RUA 12 DE OUTUBRO - TUBO DE 400M

Volume dos tubos = π x (diametro do tubo/2) ² x comprimento da rede.

Volume dos Tubos = $3,14 \times (0,50/2)^2 \times 113,33$

VOLUME DOS TUDOS: 22,24 m³ (valor arredondado)

 $R = ((245,64 + 43,35 - 22,24) \times 30\%)/2$

 $R = 40,012m^3$

R TOTAL = 40,01m³(valor arredondado)

TOTAL SOMATÓRIO = 162,07m³

7.06 – Carga e descarga mecânica de solo utilizando caminhão basculante.

Fórmula: = (volume de escavação manual)

Total carga = $179,87 = 179,87 \text{ m}^3$

7.07 – Transporte com caminhão basculante 6m³ em rodovia pavimentada, DMT ≥ 4km.

Fórmula: = (Volume do tubo) x (empolamento 25%) x DMT.

AVENIDA 15 DE NOVEMBRO 600 MM

Total transporte = $60,17 \text{ m}^3 \text{ x } 1,25 = 75,22 \text{ m}^3$

AVENIDA 15 DE NOVEMBRO 400 MM

Total transporte = $7,06 \text{ m}^3 \text{ x } 1,25 = 8,82 \text{ m}^3$

RUA 12 DE OUTUBRO 600 MM

Total transporte = $29,25 \text{ m}^3 \text{ x } 1,25 = 36,56 \text{ m}^3$

RUA 12 DE OUTUBRO 400 MM

Total transporte = $22,24 \text{ m}^3 \text{ x } 1,25 = 27,80 \text{ m}^3$

TOTAL: (75,22 + 8,82 + 36,56 + 27,80) X 1,5 km = 222,60m³/km

7.08 – Tubo de concreto simples, CLASSE – PS2, PB DN 400 MM- Águas pluviais.

Ver prancha n° 04 = 149,29m

7.09 – Assentamento de tubo de concreto simples DN 400 MM, para rede coletora de águas pluviais.

Ver prancha n° 04 = 149,29m

7.10 – Tubo de concreto simples, CLASSE – PS2, PB DN 600 MM- Águas pluviais.

Ver prancha n° 04 = 219,74m

7.11 – Assentamento de tubo de concreto simples DN 600 MM, para rede coletora de águas pluviais.

Ver prancha n° 04 = 219,74m

7.12 - PV-1 - Poço-de-visita 2,32x2,32m, em alvenaria de tijolo comum de 1 vez assentada e revestida internamente com argamassa de cimento e areia 1:3, lastro de brita 12cm, berço 18cm em concreto fck = 15 MPa, laje de 12cm em concreto armado fck = 20 MPa, incluindo forma, escavação manual e reaterro apiloado, conforme projeto tipo. Exclusive pescoço e tampão.

Ver prancha n° 11 = 3,00 un.

7.13 - BLSC - Boca-de-lobo simples, em concreto simples fck 20 MPa, incluindo forma, escavação, calçamento ao redor e grelha em f°f° tipo pesada, conforme projeto.

Ver prancha n° 12 = 10 un.

FLÁVIO ROBERTO VENDAS TANUS Eng^o Civil – CREA 9.432/D-MS